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Instability of laminar flows due to a film of adsorption 
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When a horizontal layer of viscous liquid with an adsorption film of varying 
concentration as its upper boundary is set in motion by a steady translation of 
its lower boundary, plane Couette flow with zero surface velocity is possible. 
In  this paper the stability of this flow is considered, and it is found that the liquid 
layer can be unstable for long waves. The instability found for this flow, however, 
exists also for other laminar flows with an adsorbed film, and plane Couette 
flow has been chosen only as a simple means of demonstration. 

1. Introduction 
When surface-active material is present in an adsorbed film at  the surface 

of a liquid, the surface tension of the liquid may change from place to place, 
giving rise to non-zero shear stresses at  the surface. If the surface concentration 
of the adsorbed material is denoted by y, the surface diffusivity by D, an.d the 
time by t, the equation of continuity for the adsorbed material is (Levich 1962, 
p. 393) ay/at + div (yv - D grad y) +j, = 0, 

in which v is the velocity of the fluid at the surface, j, is the flux of the material 
from the surface to the interior of the liquid, per unit time and per unit area, and 
the divergence applies to the surface only. The normal fluxj, is usually assumed 
negligible compared with the other terms. We shall make the same assumption 
here and shall furthermore assume D to be constant. Thus the preceding equation 
will be written as 

@/at + div (yv) = DAy, 

A being the Laplacian operator. 
Landau & Lifshitz (1959, pp. 242-3) presented a solution for a flow in a deep 

channel joining two reservoirs and driven by surface shear arising from the 
non-homogeneity of y on the surface. Instead of (2) they presented its non- 
diffusive form 

P a )  
but the solution given does not satisfy ( 2 a )  or ( 2 )  and is therefore not valid. 
Landau & Lifshitz attributed the solution to Levich, and gave reference to the 
Moscow edition (1952) of the latter’s book Physicochemical Hydrodynamics. 
The only edition of that book at  the present writer’s disposal is the second edition 
in its English version (Levich 1962). When the writer searched the second edition 
he could not find the solution Landau & Lifshitz referred to. It is not clear whether 

(2) 

ay/at + div (yv) = 0; 
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Levich realized his solution was wrong and therefore withdrew it in the second 
edition of his book, or he merely suppressed it for other reasons. At any rate 
any interested reader can demonstrate to his own satisfaction that the solution 
quoted by Landau 8: Lifshitz is incorrect. It turns out that if one insists on giving 
a valid solution of Levich's original problem one must take into consideration 
the longitudinal variation of velocity and the surface height. If one still wants 
to have a simple and truly one-dimensional solution, one must consider a dif- 
ferent problem, in which the free surface must be stationary, in order that ( 2 )  
can be sat'isfied. Since in a one-dimensional flow the surface must be flat, and 
since on that flat surface the pressure must be constant, the flow can either be a 
horizontal plane Couette flow with the lower boundary moving, or a plane 
Poiseuille-Couette flow, with the lower boundary inclined to the horizontal but 
not necessarily moving. 

For simplicity we consider the former flow in this paper, and investigate its 
stability. It will be seen that this flow can be unstable for long waves. The motion 
of the lower boundary does make the flow rather special, and this speciality is 
of course not attractive. But the instability to be demonstrated no doubt exists 
also for more natural free-surface flows with an adsorbed film, such as (a )  flow 
of a liquid layer down an inclined plane, or ( b )  the nearly parallel flow of a liquid 
layer on a horizontal bottom, with a nearly parabolic velocity distribution in 
each section due to a longitudinal pressure gradient which is in turn due to the 
slope of the free surface induced by the motion of the surface film. We wish to 
demonstrate the kind of instability which can occur for flows with an adsorbed 
film, and have chosen plane Couette flow merely as a simple vehicle for demon- 
stration. 

2. Primary flow 
Consider a unidirectional steady flow in the X-direction of a layer of viscous 

liquid of depth d. The velocity, denoted by ii, is a function of Y only. The lower 
boundary moves with a constant speed V (see figure 1). We shall consider only 
the case Z(0) = 0. Since the flow is unsteady, the solution of (2) is, with 7 denoting 

(3) 
the y for the primary flow, 

in which yo is the value of 7 a t  the origin, and 

7 = YO+YJ, 

Y1 = [7(L) - r( -L)1/2L- (4) 

The length of the channel is 2L and supposed to be very large compared with d. 
The reservoir with greater concentration of the adsorbed material is situated at 
X = L, and the other reservoir at x = - L. Note that, if U ( 0 )  is not zero, (3) is not 
a solution of (3). This is the reason for demanding zero velocity a t  the surface. 

If the surface tension is denoted by T ,  the shear stress on the surface, where 
Y = 0, is, for the co-ordinates chosen in agreement with anearlier work (Yih 1963), 

rZ1 = -aT/aX = Saylax = Syl, ( 5 )  

in which -S = aT/@ (6) 



Instability of laminar flows 495 
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Y 
FIGURE 1. Definition sketch. 

is supposed to be constant. It is obvious that the flow due to a moving lower 
boundary in the presence of a stationary upper surface at  constant pressure must 
be a plane Couette flow described by 

u = y, ( 7 )  

in which u = u/v,  y = Y/d. (8 )  

pdii ldy = y16. (9) 

This implies 6y1d/pV = 1.  (10) 

However ( 5 )  must be satisfied. Hence, with p denoting the viscosity, 

Equations (3) and (7 ) ,  with the restriction (lo),  describe the plane Couette flow 
under consideration. The pressure gradient is of course zero, so that, if j3 denotes 
the pressure of the primary flow, 

aj3lax = 0. (11) 

3. General formulation of the stability problem 
We consider, as usual, only two-dimensional disturbances. With u and v 

denoting the velocity components in the directions of increasing X and Y ,  
respectively, and with p indicating the pressure, the Navier-Stokes equations 
are au au au 1 ap 

at ax a17 pax -+ u - +V - = -- - + VAU, 

in which v is the kinematic viscosity. The co-ordinates X and Y are defined in 
figure I .  The equation of continuity is 

aulax + avlay = 0. (14) 

(15) 

The substitutions 
(up v1) = (u, v)l V ,  (2, Y) = ( X ,  Y ) l4  
pl = p /pV2  and 7 = tV /d ,  
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can be used to reduce (12), (13) and (14) to their dimensionless forms: 

in which A is now in terms of x and y, and 

R = Bd/v  and F = V(gd) - i  

are the Reynolds number and Froude number, respectively. 

Let u, = U + u ' ,  v1 = d ,  and p = P+p' ,  ( 2 0 )  

in which U is the dimensionless velocity of the primary flow given by ( 7 ) ,  P 
is the diniensionless pressure of the primary flow, and the accented quantities 
are perturbation quantities of magnitude very much smaller than unity. Sub- 
stituting (20) into ( l6) ,  (17) and (18), subtracting out the terms representing 
the primary flow only and neglecting quadratic terms in the perturbation 
quantities, we have 

u: + uu,; + up) = - p ;  + R - ~ A ~ I ,  

21: + U V ~  = -pl! + R-lAv', 

uj, + v; = 0, 

(21) 

( 2 2 )  

(23) 

with subscripts denoting partial differentiation. Equation (23) permits the use of 
a strea,m function $, in terms of which 

(24) 

The boundary conditions a t  the bottom are 

(i) u' = thy = 0 and (ii) 2)' = - II., = 0. 

Before we can formulate the boundary conditions a t  the free surface an equation 
goveriiiiig the perturbation in y is needed. With 

Y = ? /+Y0Yf ,  ( 2 7 )  

in which y' is the dimensionless perturbation quantity in y ,  the linearized and 
dimonsionless form of (1) is 
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in which Pe‘= Vd/D, (29) 

and A is in terms of x and y. In  obtaining (28), it  is understood that the curvi- 
linear distance along the free surface can be identified with x, since the ampli- 
tude of the waves under consideration is supposed small. Equation (28) canbe 
written as 

(28a) 

The boundary condition at the free surface regarding the shear stress is then 

aY’ p -+- =Syl+Sy -, (LE ;?) O ax 
or, iii dimensionless terms, 

Since (30) is, a priori, to be applied at  the free surface rather than at  y = 0, 
its final form is, after (20), ( 5 ) ,  (10) and (24) have been utilized, 

in which 7 is the dimensionless displacement of the free surface, as shown in 
figure 1. Equation (30) can now be applied at y = 0. Of course, for plane Couette 
flow, the first term is zero, and it would not have made any difference if (30) 
had been applied a t  y = 0 to start with. 

The normal-stress condition at  the free surface is 

- or 
2 avl a27 T 

) s=- 
pdV2’ 

.$I1+- -+s- = 0 
R ay ax2 

Since this has to be applied at  the free surface, and not merely a t  y = 0, it  can be 
written further in the form 

- P - PUT - p’ - 2R-1kz, + s7,, = 0. 

Now P(0) = 0 and PJO)= F-2, so that the normal-stress condition can be 
written as 

(iv) F-2q +p’ + 2R-l9bZU - Sy,, = 0. 

The conditions (iii) and (iv) all involve 7. To determine 7 in terms of $, we use 
the kinematic condition 

-$z = v’ = q7. (31) 

We now consider a spatially growing or damping disturbance of (dimensionless) 
angular frequency o, and assume 

($,P‘, Y’) = [$(Y),f  ( Y ) ,  X(Y)I  exp i [Sad” - 4 7 (32) 
32 Fluid Mech. 28 
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in which OL is a function of x. The reason for not assuming a to be independent of 
x is that the surface tension is not constant, and therefore the diffusion equation 
of the surface material and one free-surface boundary condition have x-dependent 
coefficients. We shall retain the x-dependence of these coefficients, and shall 
consider the instability of the disturbance when a and w are both small. Since 

the flow is unstable or stable according as cxi is positive or negative, provided 
the waves propagate upstream? (toward decreasing values of x). Equation (31) 
then assumes the form 

7 = a 9 0 e x p  w i [ j a c i x - ~ ] .  (33) 

The equations of motion become 

i ( a U - ~ )  $’-iaU’$ = - i~f+R-l($” -a2$’), (34) 

a(w - aU) $ = f ‘  + iaR-1($”- a2$), 

and (28 a )  becomes 

- i w x + L $ ’ + - $  y d ia? , = --x, a2 
Yo Yo P6 

in which 7 is not constant but a linear function of x. In  (34), (35) and (36), the 
primes denote differentiation with respect to y. Elimination off between (34) 
and (35) produces the Orr-Sommerfeld equation 

qP-2a2$”+a4$ = iR[(aU-w) ($”-a”)-b!U”]. (37) 

We shall now write the boundary conditions in terms of $ and x. These are 

6) $’(I) = 0, 

(iii) $”(O) +a”(O) = (iayo/y,d) x ( O ) ,  

(ii) $(1) = 0, 

(iv) [a2(RF2 + a2SR)/w] $(O) + aRU’(0) $(O) + (Rw + 3a2i) $’((I) - i$”’(O) = 0. 

In  obtaining the final form of (iv), p f  has been evaluated from (32), with f given 
by (34), and with U ( 0 )  = 0. 

The formulation is now complete. We should note that, since T is not constant 
for all x, nor is S. Since S is associated with a3 in (iv), we can, to the stage of 
approximation achieved in this paper, ignore it, and write the last boundary 
condition as 

(iv) R[a/P2w + U’(O)] $(O) -J- ( R w  + 3a2i) $’(O) - i@”(O) = 0. 

The x-dependence of S, however, should be retained in higher-order approxima- 
tions. 

t As =.ill be shown, the waves treated in this paper propagate upstream. In case the 
waves propagate downstream, the flow is unstable if ai is negative, and stable if ad is positive. 
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4. Solution of the stability problem for plane Couette flow 
In  solving the differential system governing stability formulated in the last 

section, we shall adopt the procedure in Yih (1963).  Since U" = 0 in the present 
case, the first approximation is governed by the equations 

$; = 0, ( 3 7 a )  

( 3 6 a )  - iwxo + (Yld/Y,) &J = 0,  

and the boundary conditions 

(i) $;(I) = 0, (ii) $,(l) = 0, 

(iii) &(o) = (ia,yo/y14xo(0), (iv) &'(o) = 0. 

Note that ax or ox is of the same order as 
must be kept in (36a) and (iii). Combining these two equations, we have 

and its derivatives, and hence 

qq0) = w-'a,&JO). (38) 

The solution of (37a) ,  with conditions (i), (ii), (iv) and (38 ) ,  is straightforward 
and is 

$6, = (1 -y)2, a, = -#. (39) 

Thus the waves propagate in the negative x-direction with dimensionless speed 1, 
or dimensional speed V .  

The next approximation involves the equation 

@; = - i2wR( 1 + y), 
whose solution is? 

q51 = - i2wR(&y4 +&y5) + ABy + ACyZ + ADy3. 

are Two of the boundary conditions for 

(i) &(1) = 0 ,  (ii) q51(1) = 0. 

Condition (iv) now has the form 

(iv) - wR(3 - P2) - i&'(O) = 0. 

As to the equation corresponding to ( 3 8 ) ,  (36)  and the original form of (iii) a t  
this stage give it the form 

A B  + AC + A D  = AioR, A B  + 2AC+ 3AD = &i5wR, BAD = iwR(3 - F-21, 

from which (since a, = - w )  

t See Yih (1963) for the reason for not providing a term AA. 

32-2 
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By utilizing (10) one can interpret (42) in the following dimensional terms: if 

the flow is unstable. This criterion is x-dependent. The surface-active agent is 
placed at  x = L, and therefore 7 increases with x. Thus, if the flow is neutral for 
one value of x, it is unstable for all algebraically smaller values of x, and the 
degree of instability increases as x decreases. 

For higher approximations AB, AC, and AD must be evaluated. These are 
functions of x. 

In  (43), the first term represents the stabilizing effect of gravity, and the second 
the stabilizing effect of the diffusivity of the material and of viscosity. The third, 
having its origin in the third term in (36) and eventually in the third term in 
(28a), represents the stabilizing effect of the stretching of the film. The right-hand 
side of (43) represents the destabilizing effect of the gradient of surface tension. 
It is equal to 13 V2/24, in which V is the necessary bottom velocity to make the 
surface velocity of the primary flow equal to zero, and thus to make truly parallel 
flow possible. We may also consider it to represent the destabilizing effect of 
inertia, since i t  has its origin in the inertial terms on the right-hand side of (40). 
But these inertial terms in turn owe their origin to the primary flow, which is 
intimately related to the surface-tension gradient. 

Finally, we may wonder whether the inequality (43) for instability is ever 
satisfied in a realistic situation. It is not unrealistic to consider a layer of water of 
depth 0.02 ft. flowing from one reservoir to another 1 ft. away, where the surface 
contamination reduces the surface tension to one half of its value without such 
contamination. The surface tension of water a t  70 "F is 0.005 lb./ft. Thus S;j; 
(6 assumed constant) has one half of that value at the surface of the contaminated 
reservoir. The quantity Sy, x 1 ft. also has the value 0-0025 lb./ft. Since p = 1.94 
~ lug/ f t .~ ,  g = 32.2ft./sec2, v = 1.05 x 10-5ft.2/sec, p = 2.04 x 10-51b.-sec/ft.2, 
and D can be assumed to be of the same order as v and will be assumed equal to 
1 0 v  on the safe side, we have, in units of ft.2/sec2, 

$gd = 0.160, 

Sy/pd = 0.013, 

Dv/d2 = 2.75 x 10-6, 

(6yld/p)2 = 9. 
Thus (43) is definitely satisfied. It is also evident that, of the three stabilizing 
effects, that due to gravity is the most important. 
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